
Callbacks vs. Promises vs.
Async/Await: Detailed Comparison

Karnika Gupta · Follow

Published in Women in Technology · 4 min read · Feb 23, 2024

276

Introduction

Callbacks, promises and async/await, these are the methods to handle
asynchronous behaviour in javascript. We need asynchronous programming
for fetching data from the server, uploading files and handling user
interactions. Initially, we used callbacks but it had consequences like deep
nesting and code complexity. To tackle this scenario, concepts like promises

Open in app Sign up Sign in

Search Write

https://medium.com/@karnikagupta1830?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/womenintechnology?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/@karnikagupta1830?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2F13a44c4055be&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=post_page-13a44c4055be----d1f6ae7c778a---------------------post_header-----------
https://medium.com/womenintechnology?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------bookmark_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------bookmark_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Dd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Dd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Dd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Dd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Dd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=-----d1f6ae7c778a---------------------post_audio_button-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fwomenintechnology%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=-----d1f6ae7c778a---------------------clap_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fwomenintechnology%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=-----d1f6ae7c778a---------------------clap_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fwomenintechnology%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=-----d1f6ae7c778a---------------------clap_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fwomenintechnology%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=-----d1f6ae7c778a---------------------clap_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fwomenintechnology%2Fd1f6ae7c778a&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&user=Karnika+Gupta&userId=13a44c4055be&source=-----d1f6ae7c778a---------------------clap_footer-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fd1f6ae7c778a&%7Efeature=LoOpenInAppButton&%7Echannel=ShowPostUnderCollection&source=---two_column_layout_nav----------------------------------
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Fmedium.com%2Fwomenintechnology%2Fcallbacks-vs-promises-vs-async-await-detailed-comparison-d1f6ae7c778a&source=post_page---two_column_layout_nav-----------------------global_nav-----------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------

and async/await were introduced. These concepts helped in providing
readable and clean code. Now let us dive deep into how we can compare
them based on their usage.

Callbacks

Callbacks are those functions which are passed as arguments to another
function and are executed when a particular task is completed.

function fetchData(callback) {
 setTimeout(() => {
 callback('Data fetched');
 }, 1000);
}

fetchData((result) => {
 console.log(result); // Output: Data fetched
});

Here in the above example, we have defined a fetchData() function which
has a timeout of 1 second. That means the result will be rendered after 1
second.

Callback hell problem: It creates a problem when we have multiple
asynchronous operations. There it forms a nested structure which becomes
complicated and hard to read code.

Advantages of Callbacks

They are very simple to use and are widely supported.

Efficient when working with simple asynchronous operations.

Disadvantages of Callbacks

Quite complicated when dealing with multiple asynchronous operations
which leads to callback hell.

Error handling is challenging task as the code becomes complicated and
hard to understand.

Promises

Promises is a representation of completion or failure of any asynchronous
operation. It allows chaining of multiple asynchronous operations. There are
basically 3 states in promises i.e., resolve, pending and reject.

function fetchData() {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Data fetched');
 }, 1000);
 });
}

fetchData()
 .then((result) => {
 console.log(result); // Output: Data fetched
 })
 .catch((error) => {
 console.error(error);
 });

In the above code, we have a fetchData() function which returns a promise.
If the promise is resolved, the result will be displayed and if it is rejected
then the catch block will be executed which will display the error.

Chaining Promise:

fetchData()
 .then((result) => {
 return processData(result);
 })
 .then((processedData) => {
 console.log(processedData);
 })
 .catch((error) => {
 console.error(error);
 });

In the above code, fetchData() function is either resolved or rejected. If the
request is resolved, .then will be executed step-by-step. But is the request is
rejected then the chain will be executed till it reaches the .catch block to
display the error.

Advantages of Promises

Promises solves the main problem of callback hell by providing chaining.
This makes code more readable and clean.

Error handling is improved with the help of promises as we can use
.catch() for error handling in promises.

Disadvantages of Promises

It requires deep understanding of Promises API as it includes multiple
properties and methods.

Async/Await

Async/await is a feature that is built on top of promises to make it better and
efficient. It is more concise and provides a synchronous-like way to write
asynchronous programs. await keyword is always used inside the async
function scope.

async function fetchData() {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Data fetched');
 }, 1000);
 });
}

async function getData() {
 try {
 const result = await fetchData();
 console.log(result); // Output: Data fetched
 } catch (error) {
 console.error(error);
 }
}

getData();

In the above code, fetchData() function returns a promise. getData() is a
async function which contains a try catch block . We have result which
waits for the fetchData() function to get the result. If the promise is resolved
then the result will be displayed otherwise catch block will be executed.

Advantages of Async/Await

It is much more readable as compared to promises and callbacks. It is
much alike synchronous code which is easier to understand.

It is built on top of the promises which provides compatibility between
the two.

Disadvantages of Async/Await

It has limited support in the older versions.

Comparison

Performance: As we compare, promises and async/await is slightly
overhead as compared to callbacks because of the abstraction layer. But
the difference is as good as null.

Readability and Maintainability: Async/await provides the most readable
and maintainable code and followed by promises but callbacks leads to
callback hell.

Error Handling: Async/await provides the best error handling syntax
which provides much cleaner code. It is followed by promises and
callbacks are mostly prone to errors.

Sequential vs. Parallel Operations: All the three approaches provides
both the sequential and parallel operations. Async/await and promises
provides clean and maintainable syntax for sequential operations.

Best Practices and Use Cases

When to Use Callbacks: Use callbacks either for simple and easy
asynchronous operations or when handling those APIs that only support
callbacks.

When to Use Promises: Promises are well suitable for handling multiple
asynchronous operations in a more structured manner using .then .

When to Use Async/Await: Use Async/Await for writing clean and much
readable asynchronous code, especially for complex tasks involving
multiple asynchronous operations.

Migration and Adoption

Migrating from Callbacks to Promises: Rewrite callback-based code to
use Promises for improved readability and error handling.

Migrating from Promises to Async/Await: Convert Promises to
Async/Await for even cleaner and more synchronous-like code.

Conclusion

Callbacks, Promises, and Async/Await provides us different approaches
towards handling asynchronous operations in JavaScript. While callbacks
are simple but prone to callback hell, Promises and Async/Await provide
cleaner and more readable code structures. Choosing the right approach
depends on the specific requirements and complexity of the asynchronous
tasks.

JavaScript Promises React Asynchronous Programming Best Practices

https://medium.com/tag/javascript?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/tag/promises?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/tag/react?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/tag/asynchronous-programming?source=post_page-----d1f6ae7c778a--------------------------------
https://medium.com/tag/best-practices?source=post_page-----d1f6ae7c778a--------------------------------

